leibniz/lib/groebner.ml
2026-01-19 03:37:26 +00:00

64 lines
1.8 KiB
OCaml

open Polynomial
type monomial_order = Lex | GrLex | GrevLex
let rec compare_monomials order m1 m2 =
let total_degree powers = List.fold_left (fun acc (_, n) -> acc + n) 0 powers in
match order with
| Lex ->
let rec lex_compare p1 p2 =
match (p1, p2) with
| [], [] -> 0
| [], _ -> -1
| _, [] -> 1
| (v1, n1) :: rest1, (v2, n2) :: rest2 ->
let c = String.compare v1 v2 in
if c <> 0 then c
else if n1 <> n2 then compare n2 n1
else lex_compare rest1 rest2
in
lex_compare m1 m2
| GrLex ->
let d1 = total_degree m1 in
let d2 = total_degree m2 in
if d1 <> d2 then compare d2 d1
else compare_monomials Lex m1 m2
| GrevLex ->
let d1 = total_degree m1 in
let d2 = total_degree m2 in
if d1 <> d2 then compare d2 d1
else compare_monomials Lex m2 m1
let leading_term poly order =
match List.sort (fun t1 t2 -> compare_monomials order t1.powers t2.powers) poly with
| [] -> {coeff = 0.0; powers = []}
| t :: _ -> t
let s_polynomial _p1 _p2 _order =
[]
let reduce poly _basis _order =
poly
let buchberger polys order =
let rec loop basis =
let pairs = List.concat_map (fun p1 ->
List.filter_map (fun p2 ->
if p1 != p2 then Some (p1, p2) else None
) basis
) basis in
let s_polys = List.map (fun (p1, p2) -> s_polynomial p1 p2 order) pairs in
let reduced = List.map (fun sp -> reduce sp basis order) s_polys in
let non_zero = List.filter (fun p -> List.length p > 0) reduced in
if List.length non_zero = 0 then basis
else loop (basis @ non_zero)
in
loop polys
let groebner_basis exprs vars =
let polys = List.map (fun e -> expr_to_poly e vars) exprs in
let basis = buchberger polys GrLex in
List.map poly_to_expr basis
let solve_polynomial_system _exprs _vars =
[]